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Phase transition processes have long been well studied, but with the exception of a 
few efforts [1-3] their subjects have been opaque materials, so that thermal radiation inside 
the material was not considered. Study of radiant-conductive transport of thermal energy 
in semitransparent materials with a phase transition of the first sort is of theoretical 
and practical interest (for growth of semitransparent crystals, heating of ice layers by 
solar radiation, etc.). 

The present study will consider nonsteady-state radiant-conductive heat exchange upon 
fusion and solidification of a one-dimensional plane layer of semitransparent material of 
thickness L, located between two opaque surfaces. The following assumptions are made in 
the mathematical formulation of the problem: all material in the solid phase is crystalline: 
upon solidification the liquid phase transforms to the solid in a manner such that a localized 
separation region between solid and liquid phases develops; the medium in which the phase 
transition occurs has a definite phase-transition temperature, and the phase transition is 
accompanied by liberation or absorption of a latent heat of phase transition; convection 
is absent from the liquid phase; the medium is nonscattering, absorbing, and radiating: local 
thermodynamic equilibrium occurs within the entire volume of the layer. 

The solution of the problem reduces to finding the temperature distribution and position 
of the phase separation boundary as functions of time. Here and below, the subscript 1 will 
denote the left-hand side, with 2 denoting the right-hand side of the phase separation boun- 
dary. The mathematical formulation will be as follows: 

pc~(l') O---Z= 0-7 Ox ,' t >O,  

i =  1, 0<x<y(t); i = 2, y ( t ) < x < L ;  
(1) 

with condition on the phase boundary: 

c o  

= - - + 

xp~-f ~i~ y5 ~2~ ~+ o 
(2) 

and boundary conditions: 

OT 1 
~,l--~- x =(~l(t)  T1 + q~(t), x = 0 ~  

OT 2 ~'2~ =--(~2(t) T 2 +q~(t), x = L ;  
(3) 

the initial temperature distribution and position of the phase transition front are: 

T(x, 0) ---- cptx), y ( 0 ) -  Yo, 0 < Yo < L. (4) 

The p h a s e - t r a n s i t i o n  t e m p e r a t u r e  i s  c o n s t a n t  [ T ( y ( t ) ,  t )  = T t ] .  H e r e  c :  and c 2 a r e  s p e c i f i c  
heats; Xi and X2 are thermal conductivity coefficients. 

E 1 = 2 ~  dv.I ~' ( I  + (~h, x,. t ) - -  I~ ([h, x, t))pld~h, 
0 0 
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E 2 = 2r~ .I d~ .I ( I +  (~2,. x, t) - -  I $  (~%~ x, t))  ~t2dp2 
0 0 

are radiant fluxes in phases 1 and 2; K is the latent heat of phase transition. 

The spectral intensities of radiation forward Iv+(~i, x, t) and to the rear Iv-(~/i, x, t) 
are defined from the radiation transport equations individually for each phase: 

, Ol + 
- n~,db,~ (r)) 0,, t ~  + ~ , i  (I~ + ~ = �9 

( 5 )  aG" 
, , - - ~  - =~.~ ( z ;  - , ~ h 4 . .  (T)) = 0 

(with boundary conditions for the intensities from [3]), where i = i, 2; Vi = Ic~ ~i]; ~v,i 
is the spectral absorption coefficient; nv, i is the spectral index of refraction; Ib,v(T) 
is the spectral intensity of radiation of an ideal black body in a vacuum. 

In the present study, Eqs. (1)-(4) were solved by an interpolation method [4, 5], for 
which the integral conservation laws were satisfied with a difference approximation of the 
thermal conductivity equation. An implicit difference network was used with the drive meth- 
od combined with the iteration method. Calculations were halted when temperature fields 
as calculated for two successive iterations coincided within the specified degree of accu- 
racy. This method permits tracking the motion of the phase separation boundary with a high 
degree of accuracy. In determining the radiant fluxes integrals of the form 

1 X �9 

E.  = ~ @-~ .xp ( - -  h/~) a~+, x (x) = ~ I (~') g~ (~ - -  ~') a~' 
0 0 

were calculated with Gauss quadratures and trapezoid expressions, respectively. 

We write Eqs. (i) and (2) in dimensionless form 

C i ' - ' ~ - =  "~-~ 1 - -  T "  "r>O,~ 

~ = t , O < B < z ( x ) ; ~ = B ~ z ( * ) < B < l ;  

(6) 

/ i t Y dz = A1 00~ I O02 + (r  (~+) - . r  (~.-)) a+,, (7) 

where $ = x/L; �9 = o0Tr3t/PcrL; z = y/L; @i = Ti/Tr; Ci = ci/Cr; Ai = Xi/lr; r = Em, i/ 
o0Tr4; Y = K/crTr; o 0 is the Stefan-Boltzmann constant; N = Xr/o0Tr3L is the radiation-con- 
duction parameter; and r is an index defining the parameter. 

To test the algorithm, a numerical calculation of T-field formation and motion of the 
phase boundary was performed for fusion and solidification of a one-dimensional plane layer 
with initial data from [i], which corresponds approximately to fusion of fluorite [Tt = 1700 
~ X= = Xr = 9 W/(m-~ L = 0.I m]. All calculations were performed in the gray approxima- 
tion without consideration of temperature dependence of properties. 

The initial data for the fusion problem in dimensionless form are as follows: C I = 
0.75, C 2 = i, A l = 2, A= = i, Y = -0.i, with emissivities of both opaque surfaces ei = e2 = i. 
Boundary and initial conditions are as follows: 

92 



/ . I~S' 

-3 ..j. 

O,7- 
0 

O.J . , 
-~'.L~,r o o o , ' ;  o,'~ '~. 7,o 

Fig. 3 Fig. 4 

0(0 ,  ~) = 0,7,  @(l,  ~:) = 0,3,  @(~, O) = 
= 0 3,, O(z,  ~) = 0 ,5 ,  z(O) = 0,, 

~>0,0<~<I. 

For the solidification problem C I = i, C 2 = 1.25, A I = i, A 2 = 0.5, Y = 0.I. Both boun- 
dary surfaces are absolutely black. The boundary and initial conditions are: 0(0, ~) = 
0.3, 80(1, x)/~ + o20(1, ~) = q2, o2 = 0.2, q2 = 0.12, @($, 0) = 0.7, @(z, ~) = 0.5, z(0) = 
0, T > 0, 0 < $ < i. 

We will consider the concrete results of the calculation. Figure 1 shows the tempera- 
ture-field distribution for solidification, with solid lines corresponding to N = 0.08, and 
dashed lines to pure thermal conductivity, n I = n 2 = 1.5, h I = i, h 2 = 2, ~ = 0.215, 2.695, 
and 12.8 (lines 1-3). Figure 2 shows temperature-field formation during fusion of the speci- 
ment with identical indices of refraction (a) and indic~s differing in the liquid and solid 
phases (b) [N = 0.05, h I = i, h 2 = 2; a) n I = n 2 = 1.5, x = 3.36, 1.5, 0.ii; dashed lines, 
pure thermal conductivity; b) n I = 1.75, n 2 = 1.5, x = 6.2, 1.5, 0.ii; lines 1-3]. The dif- 
ference in indices of refraction leads to refraction, reflection, and total internal refrac- 
tion of the radiation flux on the phase boundary, as a consequence of which motion of the 
phase-transition front accelerates and exits to a steady-state regime (Fig. 3, dashed line). 

Figure 3 shows the time dependence of the position of the phase boundary for various 
values of N (i, 0.01; 2, 0.05; 3, pure thermal conductivity) during fusion. It is evident 
that radiation accelerates the phase-transition process. 

Calculations reveal that at certain physical parameter values (for small values of N) 
the classical Stefan condition is violated on the phase separation boundary. This implies 
that in place of a boundary, a phase-transition region appears, as was noted in [6]. Conse- 
quently, the model selected proves inapplicable for calculations. This is illustrated by 
Fig. 4, where a supercooled region appears on the temperature profile in the vicinity of 
the phase boundary (N = 0.01, h I = i, h 2 = 2, x = 2.367, 5.5, i0; lines 1-3). 
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